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Abstract: Recently, a finite-temperature real-time static potential has been introduced

via a Schrödinger-type equation satisfied by a certain heavy quarkonium Green’s function.

Furthermore, it has been pointed out that it possesses an imaginary part, which induces

a finite width for the tip of the quarkonium peak in the thermal dilepton production rate.

The imaginary part originates from Landau-damping of low-frequency gauge fields, which

are essentially classical due to their high occupation number. Here we show how the imag-

inary part can be measured with classical lattice gauge theory simulations, accounting

non-perturbatively for the infrared sector of finite-temperature field theory. We demon-

strate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its

value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation

theory.
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1. Introduction

The notion of a static potential, generalizing the potential that appears in the Schrödinger-

equation of non-relativistic quantum mechanics, is thought to play a role for heavy quarko-

nium physics in QCD. If the energy of a two-quark system, E, is close to twice the mass

of the heavy quark, M , so that the combined “kinetic energy” of the two quarks, E − 2M ,

is small compared with M , then we may assume the quarks to be “static” to a good ap-

proximation, moving only slowly in the attractive potential generated by the colour fields.

To turn this intuitive picture into a quantitative description requires the use of effective

field theory methods. At zero temperature various energy and momentum scales can be

identified, the small expansion parameter being related to the ratio (E − 2M)/M . The

relevant effective theory is called NRQCD [1], or one of its variants, like pNRQCD [2]; for

reviews on the various effective theories used for describing heavy quarkonium, see refs. [3,

4]. The static potential plays the role of a certain matching coefficient in these effective

theories: it is related to, but not identical with, the non-perturbative static potential that

is traditionally defined from a large Euclidean Wilson loop in lattice QCD.

At finite temperatures, the situation becomes more complicated than at zero tempera-

ture. Indeed, finite-temperature field theory possesses many momentum and energy scales

of its own: gluonic momenta could parametrically be k ∼ πT, gT, g2T [5, 6], while gluonic

frequencies (energies) can be even softer, down to E ∼ g4T [7, 8]. Here T is the temperature

and g is the QCD gauge coupling. The relevant effective description now depends on the

relation of these scales to the scales already appearing in the zero-temperature situation.

In fact, at finite temperatures, the situation is quite complicated even at the leading

non-trivial order in g. This might be anticipated from the fact alone that the definition

of a static potential based on the Euclidean Wilson loop appears to lose its meaning: the
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Euclidean time direction becomes compact, and large Wilson loops do not possess the

same interpretation as at zero temperature. Replacing the Wilson loop by a correlator of

Polyakov loops does not remedy the situation [9, 10]. Moreover, physics lives in Minkowski

spacetime, which at finite temperatures in general requires a non-trivial analytic continu-

ation [11].

Recently an attempt was made to give a proper definition of a static potential in this

situation, in the sense of obtaining an object which has a direct connection to the spec-

tral function of the heavy quarkonium system (at least up to some order in perturbation

theory) [12]. Formally, the static potential could be defined as a certain coefficient in

the large-M expansion of an equation of motion satisfied by a suitable heavy quarkonium

Green’s function. At leading non-trivial order, the corresponding object was computed in

Hard Thermal Loop [13] resummed perturbation theory in ref. [12]. It was found that, at

least to this order, the static potential can also be obtained from a specific analytic contin-

uation of the Wilson loop defined in Euclidean spacetime with a compact time direction.

At the same time, this analytic continuation yields properties that are not familiar from

the zero-temperature context: in particular, the potential develops an imaginary part.

It is the purpose of the present paper to elaborate on the existence of an imaginary part.

We start, in section 2, by reviewing the definition(s) introduced in ref. [12]. In section 3 we

argue that the imaginary part of the static potential remains non-zero in the classical limit,

by computing it perturbatively in classical lattice gauge theory. Given that perturbative

computations at finite temperatures may ultimately suffer from infrared divergences, we

carry out non-perturbative Monte Carlo simulations in classical lattice gauge theory in

section 4, and compare the results with those of the perturbative computation. We

conclude in section 5.

2. Definition of a real-time static potential

We start by defining a certain Green’s function in hot QCD. Let r be a point-splitting

vector, and ψ̂ a generic heavy quark field operator in the Heisenberg picture. Then we

introduce

Č>(t, r) ≡

∫

d3x
〈

ˆ̄ψ
(

t,x +
r

2

)

γµ W ψ̂
(

t,x −
r

2

)

ˆ̄ψ (0,0)γµψ̂(0,0)
〉

, (2.1)

where W is a Wilson line along a straight path connecting the adjacent operators, inserted

in order to keep the Green’s function gauge-invariant; the metric is ηµν = diag(+−−−); and

the expectation value refers to 〈. . .〉 ≡ Z−1Tr [exp(−Ĥ/T )(. . .)], where Z is the partition

function, Ĥ is the QCD Hamiltonian operator, and T is the temperature.

The significance of the Green’s function in eq. (2.1) is that if we take the limit r → 0,

and subsequently Fourier transform with respect to the time t, then we obtain a function

which is trivially related to the heavy quarkonium spectral function, ρ(ω), in the vector

channel:

ρ(ω) =
1

2

(

1 − e−
ω

T

)

∫ ∞

−∞
dt eiωtČ>(t,0) . (2.2)
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On the other hand, keeping r 6= 0 for the moment, makes it easier to analyse this Green’s

function in perturbation theory.

Let us consider Č>(t, r) in the limit that the heavy quark mass M is very large. Then

Č>(t, r) satisfies a Schrödinger equation of the type

{

i∂t −

[

2M + V>(t, r) −
∇2

r

M
+ O

(

1

M2

)]}

Č>(t, r) = 0 , (2.3)

with the initial condition

Č>(0, r) = −6Nc δ(3)(r) + O

(

1

M

)

. (2.4)

The terms shown explicitly in eqs. (2.3), (2.4) result from a tree-level computation; they

also develop multiplicative radiative corrections which we have omitted for simplicity. In

contrast, the potential denoted by V>(t, r) originates only at 1-loop order. It can be defined

as the coefficient scaling as O(M0), after acting on Č>(t, r) with the time derivative i∂t.

Now, as eq. (2.3) shows, V>(t, r) can even be defined in the limit M → ∞, provided

that the trivial factor 2M is shifted away by a redefinition of time, as is standard in

NRQCD. In ref. [12], the computation in this limit was carried out to 1-loop order, O(g2),

in Hard Thermal Loop resummed perturbation theory [13]. It was found that at this order

V>(t, r) can in fact be extracted from the equation

i∂tCE(it, r) ≡ V>(t, r)CE(it, r) , (2.5)

where the function CE(τ, r) is nothing but the Euclidean Wilson loop, computed with an

imaginary time coordinate τ , with gauge fields periodic in τ → τ + ~/T .

The expression that was obtained for V>(t, r) in ref. [12] reads (the superscript refers

to the order in g; we keep ~ 6= 1; and we assume the use of dimensional regularization)

V
(2)
> (t, r) = −

g2CF ~

4π

[

mD +
exp(−mDr)

r

]

+ δV
(2)
> (t, r) , (2.6)

δV
(2)
> (t, r) = g2CF ~

∫

d3p

(2π)3
(1 − cos p3r) ×

×

∫ ∞

−∞

dp0

π
p0

[

e−i|p0|t + nB(|p0|)
(

e−i|p0|t − ei|p0|t
)]

×

×

[(

1

p2
−

1

(p0)2

)

ρE(p0,p) +

(

1

p2
3

−
1

p2

)

ρT (p0,p)

]

. (2.7)

Here CF ≡ (N2
c − 1)/2Nc; mD is the Debye mass parameter (actually of dimensionality

1/distance rather than mass); nB(x) ≡ 1/[exp(~x/T )−1] is the Bose distribution function;

and we have chosen r ≡ (0, 0, r). The r-independent term in eq. (2.6) amounts to twice a

thermal mass correction for the heavy quark. For the gluon spectral functions ρE, ρT we

assume the conventions specified in appendix A of ref. [14].

It can be observed that eqs. (2.6), (2.7) contain both a real and an imaginary part.

In particular, the familiar-looking structure in eq. (2.6), representing a Debye-screened
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Coulomb potential, is real, while the manifestly “thermal” part in eq. (2.7), containing

nB, is purely imaginary. As pointed out in ref. [12], this purely imaginary term remains

non-zero in the limit t → ∞, because of Bose-enhancement at small frequencies, ~|p0| ≪ T

(cf. eq. (2.9)).

The Bose-enhanced term corresponds to the physics of the classical limit ~ → 0, in

which situation nB(|p0|) = T/~|p0|. In fact, all other terms vanish in this limit, being

multiplied by ~. The classical potential then reads

V
(2)
cl (t, r) = g2CF T

∫

d3p

(2π)3
(1 − cos p3r)

∫ ∞

−∞

dp0

π

(

e−ip0t − eip0t
)

×

× lim
~→0

[(

1

p2
−

1

(p0)2

)

ρE(p0,p) +

(

1

p2
3

−
1

p2

)

ρT (p0,p)

]

, (2.8)

where we have also simplified the way in which p0’s appear. For large times,

lim
t→∞

eip0t − e−ip0t

p0
= 2πi δ(p0) , (2.9)

and we obtain

V
(2)
cl (∞, r) = 2ig2CF T

∫

d3p

(2π)3
(1 − cos p3r) lim

p0→0
lim
~→0

ρE(p0,p)

p0
. (2.10)

If we also take the limit r → ∞, the cosine-term in eq. (2.10) drops out. Assuming for a

moment that the two limits and the integration in eq. (2.10) commute, and making use of

the known Hard Thermal Loop form of ρE(p0,p) (eq. (B.13) of ref. [12] shows ρE at small

|p0| with our conventions), containing the parameter m2
D, then leads to the provisional

result

V
(2)
cl (∞,∞)

?
= lim

~→0
−ig2CF T

∫

d3p

(2π)3
πm2

D

|p|(p2 + m2
D)2

= lim
~→0

−i
g2CF T

4π
= −i

g2CF T

4π
.

(2.11)

Note that in the quantum theory the same result is obtained for the asymptotic value

δV
(2)
> (∞,∞) [12], and in this sense eq. (2.11) is indeed the correct physical expression.

Now, given that the integral in eq. (2.11) is finite, it might be assumed that the result

is independent of the regularization procedure. It turns out that this argument is too

naive: in fact, m2
D diverges as g2T 2/~ in dimensional regularization, indicating that the

classical limit may introduce ultraviolet singularities. In particular, if the ultraviolet is

regularized by a lattice rather than dimensionally, with a spatial lattice spacing a, then the

limit becomes finite, lim~→0 m2
D ∝ g2T/a [15, 16]. Thus the classical limit in eq. (2.10) does

exist, but the price to pay is that ρE and subsequently V
(2)
cl (∞,∞) depend on the details of

the regularization procedure. In particular, carrying out the limits in the order indicated

by eq. (2.10) with lattice regularization, does not lead to the expression in eq. (2.11) (cf.

figure 3 below).

Fortunately, this problem is not too serious: an analogous situation was met in studies

of the sphaleron rate in the electroweak theory, yet classical lattice gauge theory simula-

tions [17] did yield non-perturbative physical information, once properly interpreted (see,

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
6

e.g., refs. [18, 19]). In our case, figure 3 implies that we cannot use classical lattice gauge

theory simulations to compute corrections directly to eq. (2.11). However, we can compute

the analogues of eqs. (2.8)–(2.11) with Hard Thermal Loop perturbation theory adapted

to the ultraviolet physics of the classical lattice [15, 16], and compare subsequently these

results (the dashed curve in figure 3) with a non-perturbative determination. In this way

we can probe the infrared sector of thermal field theory, which indeed is classical in nature.

3. Perturbative real-time static potential in classical lattice gauge theory

We assume that the theory is regularized by introducing a cubic spatial lattice, while the

time coordinate is continuous. Gauge field configurations are generated with a Wilson-

discretised Hamiltonian (cf. eq. (4.1) below), and evolved with the classical equations of

motion (cf. eqs. (4.3), (4.4) below). The results depend on a single parameter,

β ≡
2CA

g2Ta
, (3.1)

where CA ≡ Nc.

The way to carry out perturbation theory in this situation was worked out in refs. [15,

16]. The procedure is analogous to Hard Thermal Loop resummed perturbation theory [13],

with technical differences originating from the different ultraviolet physics. We will refer

to this procedure as Hard Classical Loop (HCL) perturbation theory.

Let us start by introducing the notation

p̃i ≡
2

a
sin

(api

2

)

, p̊i ≡
1

a
sin(api) , p̃2 ≡

3
∑

i=1

p̃2
i , p̊2 ≡

3
∑

i=1

p̊2
i . (3.2)

Also, the integration measure is denoted by

∫

dp ≡

∫ π/a

−π/a

d3p

(2π)3
. (3.3)

Then, we consider eq. (2.8), with a few straightforward modifications following from the

introduction of lattice regularization:

V
(2)
cl (t, r) = g2CF T

∫

dp (1 − cos p3r)

∫ ∞

−∞

dp0

π

(

e−ip0t − eip0t
)

×

×

[(

1

p̃2
−

1

(p0)2

)

ρE(p0, p̃) +

(

1

p̃2
3

−
1

p̃2

)

ρT (p0, p̃)

]

. (3.4)

Here,

ρE(p0, p̃) ≡
1

2i

[

∆E(p0 + iǫ, p̃) − ∆E(p0 − iǫ, p̃)
]

, (3.5)

with ǫ = 0+, and the propagator ∆E has the form

∆E(p0, p̃) =
1

p̃2 − (p0)2 + ΠE(p0, p̃)
. (3.6)

The limit lim~→0 is assumed everywhere but not shown explicitly.
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= +

Figure 1: Integration contours for the classical real-time static potential.

3.1 Behaviour at finite times

In order to simplify eq. (3.4), it is convenient, following ref. [20], to view the p0-integration

as an integral in the complex plane, and to deform the contour suitably. As it stands,

the integrand in eq. (3.4) is finite at p0 = 0 (note that ρE is linear in p0 around the

origin). However, the part multiplying ρE contains a pole at p0 = 0; this pole just does not

contribute because of the mentioned property of ρE . Writing ρE as in eq. (3.5), this means

that we can view the original integral as indicated in the left-most drawing in figure 1, and

then also deform it accordingly. Subsequently, ǫ can be taken to be finite, because there

are no singularities outside of the real axis. Furthermore, assuming t > 0, terms multiplied

by exp[i(p0 + iǫ)t] and exp[−i(p0 − iǫ)t] must vanish, because we can imagine taking ǫ

arbitrarily large. The integrand can only decrease in this limit, and being multiplied by

exp(−ǫt), the integral then vanishes (it is a good cross-check of the numerics to verify the

vanishing at any finite ǫ). Finally, the symmetry properties of the integrand allow to reflect

the lower of the remaining contours to the upper half-plane. We thus obtain

Im

[

V
(2)
cl (t, r)

g2T

]

= 2CF

∫

dp (1 − cos p3r)

{

t ∆E(0, p̃) −

∫ ∞

−∞

dp0

2π
e−i(p0+iǫ)t ×

×

[(

1

p̃2
−

1

(p0 + iǫ)2

)

∆E(p0 + iǫ, p̃) +

(

1

p̃2
3

−
1

p̃2

)

∆T (p0 + iǫ, p̃)

]}

,

(3.7)

where the first term is the contribution of the pole in figure 1.

Let us stress that the integration in eq. (3.7) is independent of the value of ǫ > 0,

since there are no poles in the upper half-plane. Checking the independence in practice

offers another cross-check for the accuracy of the numerical integration. Naturally, small

values of ǫ are difficult, because the integrand becomes strongly peaked around the origin,

while large values of ǫ are also difficult, because the latter term is multiplied by exp(ǫt),

whereby the numerical errors of the integration are exponentially amplified at large t; a

useful compromise appears to be ǫ ≃ 1/a. In general, it is advantageous to decrease ǫ when

increasing t.

In order to insert the propagators ∆E,∆T , we need to know the self-energies ΠE , ΠT

(cf. eq. (3.6)). Starting from the spatial part of the gluon self-energy [15, 16]

Πij(p
0, p̃) = 2g2TCA

∫

dq
1

q̃2

p0vivj

p0 − p̃ · v
, (3.8)

with

vi ≡
q̊i

√

q̃2
, (3.9)
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and employing the projection operators PE
µν , P T

µν defining ΠE,ΠT (we use the conventions

specified in appendix B of ref. [12]), we obtain

ΠE(p0, p̃)=2g2TCA

(

1 −
(p0)2

p̃2

)(

Σ

4πa
−

∫

dq
1

q̃2

p0

p0 − p̃ · v

)

, (3.10)

ΠT (p0, p̃)=g2TCA

[

(p0)2

p̃2

(

Σ

4πa
−

∫

dq
1

q̃2

p0

p0 − p̃ · v

)

+

∫

dq
q̊2

(q̃2)2
p0

p0 − p̃ · v

]

. (3.11)

Here
Σ

4πa
≡

∫

dq
1

q̃2
, (3.12)

where Σ ≈ 3.175911535625 is a trigonometric factor which can be expressed in terms of

the complete elliptic integral of the first kind [21]. Note that with the form in eq. (3.10),

the combination containing ∆E in eq. (3.7) becomes

(

1

p̃2
−

1

(p0 + iǫ)2

)

∆E(p0 + iǫ, p̃) = −
1

(p0 + iǫ)2
1

p̃2 + 2g2TCA

(

Σ
4πa −

∫

dq 1
q̃2

p0

p0−p̃·v

) .

(3.13)

Denoting the square brackets in eq. (3.7) by I(p0 + iǫ, p̃), and making use of the

properties

I(−p0 + iǫ, p̃) = I(p0 − iǫ, p̃) =
[

I(p0 + iǫ, p̃)
]∗

, (3.14)

the integral over p0 can furthermore be reduced to regular cosine and sine transforms:

∫ ∞

−∞

dp0

2π
e−i(p0+iǫ)tI(p0 + iǫ, p̃)

=
eǫt

π

∫ ∞

0
dp0

{

cos(p0t)Re
[

I(p0 + iǫ, p̃)
]

+ sin(p0t) Im
[

I(p0 + iǫ, p̃)
]}

. (3.15)

Though efficient routines for such transforms exist, it is also clear that the accuracy re-

quirements grow exponentially with t, so that very large times are difficult to reach.

In a practical lattice study, the system possesses not only a finite lattice spacing, but

also a finite extent, L = Na, where N is the number of lattice points. We assume that the

box is cubic and that periodic boundary conditions are imposed in every direction. Further-

more, let us assume that we use changes of integration variables to write the momentum

integrations over the “positive” octant only,

∫ π/a

−π/a

dpi

2π
F(pi) =

∫ π/a

0

dpi

2π
G(pi) , G(pi) ≡

[

F(pi) + F(−pi)
]

, i = 1, 2, 3 . (3.16)

In a finite volume this then goes over into

∫ π/a

0

dpi

2π
G(pi) −→

1

Na

[

1

2
G(0) +

N/2−1
∑

i=1

G
(2πi

Na

)

+
1

2
G
(π

a

)

]

. (3.17)

Note that in finite volume, the analytically known integral in eq. (3.12) should also be

replaced by a numerically evaluated sum.

– 7 –
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0

1

Im
[ 

V
cl(2

)  / 
g2  T

 ]

r / a = 1

r / a = 2

r / a = 3

r / a = 4

β = 16, N = 12, analytic

Figure 2: The imaginary part of the classical real-time static potential, to leading non-trivial order

in HCL-resummed perturbation theory (eq. (3.7) with
∫

dp replaced by a finite-volume sum), for

β = 16, N = 12, Nc = 3.

Now, eq. (3.17) contains also a contribution from the zero-mode, pi = 0. Its treatment

requires in general some care. In ΠE ,ΠT , loop momenta are by definition “hard”: it is

sensible (and in fact necessary) to leave out the zero-mode. In the remaining sum in

eq. (3.7), in contrast, momenta could be soft: we thus keep the contribution of the zero-

mode as well (even though the practical effect is small). Note that for the zero-mode,

ΠE(p0,0) = ΠT (p0,0) = ω2
pl , ω2

pl ≡
2

3
g2TCA

∫

dq
q̊2

(q̃2)2
, (3.18)

where the integration can be replaced by a sum (without zero-mode) as before.1 Then the

combination in eq. (3.7) becomes

(1−cos p3r)

[(

1

p̃2
−

1

(p0+iǫ)2

)

1

p̃2−(p0 + iǫ)2+ω2
pl

+

(

1

p̃2
3

−
1

p̃2

)

1

p̃2−(p0+iǫ)2+ω2
pl

]

p=0
−→

r2

2

1

−(p0 + iǫ)2 + ω2
pl

. (3.19)

In practice, for the values N ≥ 12 that we have used, finite-volume effects are al-

most invisible at small times. Perturbative finite-volume effects grow rapidly with time,

however, and also with distance. On the other hand, perturbation theory tends to overes-

timate their significance, since it lacks the mass gap generated by the confining dynamics.

1In infinite volume, ω2
pl = g2TCA(3Σ/2π − 1)/6a, where Σ is the constant in eq. (3.12)[20].
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At the same time, whenever justified, it appears to be numerically advantageous to use

the finite-volume expressions, which contain a six-fold exact sum, rather than to approxi-

mate the corresponding infinite-volume continuous six-dimensional momentum integration

numerically. Therefore we plot the perturbative expression only in the range where the

perturbative finite-volume effects are small, t/a<∼ 10; an example of a result is shown in

figure 2.

3.2 Value in the large-time limit

As mentioned, it is not easy to evaluate numerically the HCL-resummed perturbative

expression in eq. (3.7), once the time coordinate becomes large: ǫ should be decreased,

whereby the integrand becomes strongly peaked; and one should replace the finite-volume

sums with infinite-volume momentum integrals, whereby the numerical cost increases. To

get a handle on this limit we can, however, proceed in another way, without making use of

the contour trick, and thereby obtain the correct version of eq. (2.11) on an infinite spatial

lattice. The starting point is then eq. (2.10).

For infinitesimally small ǫ, the small-p0 behaviour of ΠE reads (cf. eq. (3.10))

ΠE(p0 + i0+, p̃) = 2g2CAT

[

Σ

4πa
+ iπp0

∫

dq
1

q̃2
δ
( p̃ · q̊

√

q̃2

)

]

+ O((p0)2) . (3.20)

Making use of the definition in eq. (3.5), the asymptotic value from eq. (2.10) can be written

as

Im

[

V
(2)
cl (∞, r)

g2T

]

= −
πCF C2

A

β

∫ 1

0
d3x

1 − cos(πx3r/a)

(x̃2 + C2
AΣ/πβ)2

∫ 1

−1
d3y

δ(x̃ · ẙ)

(ỹ2)1/2
, (3.21)

where we have gone over to a notation where the integration variables are made dimen-

sionless by going to lattice units, and the integration range is restricted to the unit box

and its reflections:

x̃i ≡ 2 sin
(πxi

2

)

, x̊i ≡ sin(πxi) , xi ∈ (−1, 1) . (3.22)

Moreover, we have made use of the symmetry of the integrand, in order to restrict the

integration to positive xi.

Among the eight octants of the y-integration, the δ-function gets realised in six only,

and by changes of integration variables we can combine all the contributions together:

Im

[

V
(2)
cl (∞, r)

g2T

]

= −
2πCF C2

A

β

∫ 1

0
d3x

3 − cos(πx1r/a) − cos(πx2r/a) − cos(πx3r/a)

(x̃2 + C2
AΣ/πβ)2

×

×

∫ 1

0
d3y

δ(x̃1ẙ1 + x̃2ẙ2 − x̃3ẙ3)

(ỹ2)1/2
. (3.23)

It is now straightforward to carry out the integration over, say, x3, to remove the δ-function,

and also to make use of the symmetry of the remaining integrand in x1 ↔ x2. The 5-

dimensional integral left over can be evaluated numerically without too much trouble. The

result is shown in figure 3, for Nc = 3 and the case r/a = ∞, when the cosine-term does
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Figure 3: The asymptotic value of the real-time static potential Vcl(t, r), on an infinite lattice,

to leading non-trivial order in HCL-resummed perturbation theory (eq. (3.23)), for Nc = 3. For

comparison, we also show the expression on the right-hand side of eq. (2.11), which corresponds to

the asymptotic value of the potential V
(2)
>

(t, r) in the full continuum quantum theory.

not contribute. Values of eq. (3.23) at finite r/a can be found in table 1 below. Comparing

table 1 with figure 3, we observe that for, say, β = 16, the distance r/a = 4 gives a

value which is already relatively close to the asymptotic one. To summarise, in resummed

perturbation theory Im[V
(2)
cl (∞, r)] is definitely non-zero at all r 6= 0.

4. Classical lattice gauge theory simulations

The computation in the previous section was based on resummed perturbation theory, but

it was only carried out to a fixed order. Let us try to estimate the expansion parameters

of such a computation. Using continuum notation, the vertices of each new loop order

bring in a factor g2T . At the same time, the mass scales appearing in the dynamics are

the ultraviolet cutoff scale, Λ ∼ 1/a, as well as the confinement scale of three-dimensional

Yang-Mills theory, mG ∼ g2T [5, 6]. The resummation accounts for the dominant influence

of the hard cutoff scale Λ on the dynamics of the infrared modes, and is associated with

corrections of the type g2T/Λ ∼ 1/β. However, it does not account for the self-interactions

of the infrared modes, which may lead to an expansion parameter of the type g2T/mG ∼

1. Therefore, we would like to compare the resummed perturbative result with a non-

perturbative numerical computation.

The practical procedure of generating classical gauge field configurations is the fol-

lowing [17]. Since our observable will be gauge-invariant, we may choose a gauge; it is

– 10 –
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convenient to work in the temporal gauge, Ut(x, t) = 1. Here Uµ is an SU(Nc) link matrix.

The canonical degrees of freedom are the spatial link variables Ui(x, t) and the matrix-

valued “canonical momenta” Ei(x, t), which transform in the adjoint representation. We

denote the generators of the gauge group by T a, and assume them normalised through

Tr [T aT b] = δab/2. Furthermore, Ei ≡ Ea
i T a, Sij(x) ≡ Uj(x)Ui(x + j)U †

j (x + i), where

i ≡ aêi, and U−i(x) ≡ U †
i (x− i).

With this notation, the procedure starts by generating initial configurations (at time

t = 0) according to the partition function [17]

Z =

∫

DUiDEi δ(G) exp

{

−β
∑

x

[

∑

i<j

(

1 −
1

CA
Re Tr Pij

)

+
∑

i

Tr (E2
i )

]}

, (4.1)

where Pij is the spatial plaquette, and the Gauss law function reads

G(x, t) =
∑

i

[

Ei(x, t) − U−i(x, t)Ei(x − i, t)U †
−i(x, t)

]

. (4.2)

To obtain configurations extending to t > 0, we solve the equations of motion

a ∂tUi(x, t) = i (2CA)
1
2 Ei(x, t)Ui(x, t) , (4.3)

a ∂tE
b
i (x, t) = −

(

2

CA

)
1
2

ImTr
[

T bUi(x, t)
∑

|j|6=i

S†
ij(x, t)

]

. (4.4)

These four-dimensional configurations are then used for evaluating the real-time observ-

ables. In all that follows, we fix CA = Nc = 3, even though we have also carried out some

simulations at Nc = 2 as a crosscheck.

It is worth stressing that in eqs. (4.3), (4.4), the lattice spacing is finite in spatial

directions only. In practice, of course, the time direction needs to be discretised as well,

but with a very small lattice spacing, at ≪ a. As a check of the time evolution, it is useful

to control the conservation of the Gauss law and of the total energy.

To specify the observable to measure, we adopt the definition in eq. (2.5) as our non-

perturbative starting point. The object appearing here is a specific analytic continuation of

the Euclidean Wilson loop, and corresponds formally to a time ordering generally denoted

with the subscript (. . .)> [22]:

C>(t, r) ≡ CE(it, r) . (4.5)

At the same time, the classical (~ → 0) part of the analytic continuation, which we denote

by Ccl(t, r), is independent of time ordering (lim~→0 C> = lim~→0 C< = lim~→0[C> +

C<]/2). In fact, Ccl(t, r) is nothing but the classical Wilson loop, defined in Minkowski

time. (Note that having chosen the gauge Ut = 1, the classical Wilson loop amounts really

to a two-point correlation function of two spatial Wilson lines, both of which are local in

time.) The classical static potential is then measured from

i∂tCcl(t, r) ≡ Vcl(t, r)Ccl(t, r) . (4.6)

It turns out that Ccl(t, r) is real for all times (within statistical errors), and slowly decaying.

Therefore, Vcl(t, r) is purely imaginary, with a negative imaginary part.
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Figure 4: The classical Wilson loop, measured with classical lattice gauge theory simulations, as

a function of time in units of the spatial lattice spacing, for β = 16, N = 12, Nc = 3.

The technical implementation of our simulation follows earlier work [17, 18]. However,

to speed up thermalization, we have implemented the idea mentioned in ref. [23], whereby

the link variables Ui are first pre-thermalized with regular Monte Carlo techniques in

the dimensionally reduced SU(3) + adjoint Higgs theory (we use the code described in

ref. [24]). Since it is non-trivial to match the parameters of that theory and our effective

theory exactly, those configurations are not yet fully thermalized. However, this is not a

problem, they now need only to be evolved for a short time à la refs. [17, 18], in order

to reach the correctly thermalized configurations corresponding to the exact parameters of

eq. (4.1).

We have carried out simulations mostly with β = 16; since analytic HCL predictions

also refer to a finite value of β, there is no need to carry out a continuum extrapolation (cf.

figure 3). As typical lattice extents we have used N = 12 and N = 16; the difference of the

results between these two is only at the percent level (cf. table 1 below). The time variable

is discretised with a spacing at, with a value at/a = 0.01; measurements are recorded every

10th time step. We stress that thermalization is only carried out in the beginning, while

the subsequent time evolution is deterministic and follows eqs. (4.3), (4.4).

A representative result for the classical Wilson loop is shown in figure 4. The cor-

responding potential, extracted from eq. (4.6), is shown in figure 5. The result can be

compared with figure 2, showing the HCL-resummed perturbative prediction with the

same parameter values. The general shapes are seen to match each other to a remarkable

degree. On closer inspection, however, the amplitude of the oscillations is larger in the

simulation; the frequency of oscillations is smaller (the oscillation period is larger); and the
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Figure 5: The imaginary part of the real-time static potential, measured with classical lattice

gauge theory simulations, as a function of time in spatial lattice units (with the same parameter

values as in figure 4). Vertical lines indicate statistical errors, but they are almost invisible in this

time range.

parameters value of Im[Vcl(∞, r)/g2T ]

β N am(bare)
D method confs r/a = 1 r/a = 2 r/a = 3 r/a = 4

16.0 12 0.00 simulation 200 -0.060(2) -0.156(8) -0.246(26) -0.319(56)

16.0 16 0.00 simulation 160 -0.059(2) -0.155(8) -0.245(22) -0.326(48)

16.0 12 0.21 simulation 200 -0.059(2) -0.147(7) -0.229(23) -0.297(51)

16.0 12 0.35 simulation 182 -0.030(2) -0.064(5) -0.096(12) -0.118(21)

13.5 12 0.25 simulation 142 -0.071(2) -0.174(10) -0.270(33) -0.341(97)

16.0 ∞ 0.00 analytic — -0.0601 -0.1145 -0.1507 -0.1737

Table 1: The asymptotic values Im[Vcl(∞, r)/g2T ], obtained by fitting a constant to data in the

range t/a = 15 . . .30. The numbers in parentheses indicate the uncertainties of the last digits. The

cases am(bare)
D = 0.00 refer to the classical theory without HTL degrees of freedom. The bottom

row gives the perturbative values from eq. (3.23); the perturbative result at r/a = ∞ is -0.2152.

absolute value of the potential is larger (the imaginary part is more negative).

In order to quantify the difference, we note that at large times, the potential obtains a

constant value (or, in terms of the Wilson loop, Ccl decays exponentially, cf. figure 4). We

estimate this value by fitting a constant to data in the range t/a = 15 . . . 30, where initial

transients have died out, yet the statistical errors are still relatively small for all parameter

values that we have used. The results of the fits are shown in table 1. Unfortunately,
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statistical errors rapidly increase with r/a, and we are not able to go to large enough values

for the r-dependence to have flattened off. Nevertheless, the values at r/a = 4 already

indicate that the asymptotic value is larger (in absolute magnitude) than the analytic

HCL estimate, by some 50–100%. The fact that there thus appears to be somewhat more

“damping” in the non-perturbative classical dynamics than in the HCL estimate is not

surprising: other observables have yielded indications of a similar pattern [20].

We have also carried out so-called HTL simulations, both with the implementation

based on treating the velocities of the hard particle degrees of freedom with spherical

harmonics [19, 25], and through a discretization based on platonic solids [26]. The HTL-

simulations introduce a new parameter, which we refer to as m(bare)
D . For small m(bare)

D , say

am(bare)
D

<∼ 0.2, the results are practically identical with those of the classical simulations

(cf. table 1). With increasing m(bare)
D , say am(bare)

D
>∼ 0.35, we see some discrepancies; in

particular, the asymptotic value Im[Vcl(∞, r)] decreases in absolute magnitude (cf. table 1),

as one would expect in a situation where a lattice-induced dynamical Debye screening is

overtaken by a continuum-like parameter (cf. figure 3). At the same time, this method is

not really bringing us closer to the physical continuum limit (i.e. the continuum limit of the

quantum theory), since in that situation the bare parameter [m(bare)
D ]2 should in fact become

negative as β is increased, in order to cancel ultraviolet divergences from the dynamics.

Unfortunately, the implementation of HTL-simulations that we have followed, based on

refs. [19, 26], does not allow to simulate at [m(bare)
D ]2 < 0, and a single bare parameter

would in any case not allow to renormalise all the observables that can be measured with

classical lattice gauge theory [15, 16]. Therefore, we omit a more detailed discussion of the

HTL-simulations from here.

5. Conclusions

The purpose of this paper has been to elaborate on the fact that the finite-temperature real-

time static potential extracted from an analytic continuation of the Euclidean Wilson loop,

which can (at least to some order in perturbation theory) be inserted into a Schrödinger-

type equation governing the behaviour of a certain heavy quarkonium Green’s function,

contains an imaginary part. As discussed elsewhere [14], this imaginary part has an impact

on the heavy quarkonium spectral function at temperatures above a few hundred MeV,

introducing a width to (the tip of) the resonance peak.

Physically, the imaginary part implies that quarkonium at high temperatures should

not be thought of as a stationary state. Rather, the norm of its wave function decays

exponentially with time.

The imaginary part emerges from Bose-enhanced infrared dynamics and, in field-theory

language, is classical in nature (in particle language, it corresponds to a net disappearance

of low-energy off-shell gauge particles, due to inelastic 2 → 1 and 1 → 2 scatterings with the

hard particles in the plasma). We have computed the imaginary part with Hard Classical

Loop resummed perturbation theory, and with non-perturbative classical lattice gauge the-

ory simulations. The comparison of the results, figure 2 and figure 5, or table 1, shows rea-

sonable qualitative agreement. We conclude that non-perturbative colour-magnetic fields
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do not play a dominant role for the imaginary part of the real-time static potential; how-

ever, the non-perturbative corrections, together with higher-order perturbative terms, are

important on the quantitative level, bringing about some 50–100% increase in the absolute

value of the imaginary part at large times (for β = 16), akin in magnitude to the correction

observed for the static Debye screening mass [24]. In any case, our study confirms that

an imaginary part exists, and suggests that Hard Loop perturbation theory presumably

provides for a reasonable first estimate for it also in the full quantum theory.

For physical applications, such as determining the quarkonium spectral function, it

is essential to use the full quantum theory, rather than the classical one. Moreover, it

is convenient to use dimensional regularization. Finally, as argued in ref. [14], the static

potential should be evaluated at t ≫ r. The perturbative static potential in this limit,

V
(2)
> (∞, r), including both a real and an imaginary part, can be found in eqs. (4.3), (4.4) of

ref. [12], and has already been employed for estimating the quarkonium spectral function

in ref. [14]. Increasing the imaginary part by some 50–100% in the results of ref. [14] lowers

and widens the quarkonium peak, but the effect is not dramatic; in general, it appears that

the spectral function is more sensitive to the real than the imaginary part of the real-time

static potential.

As the next step of our program, we would therefore like to get a non-perturbative han-

dle also on the real part of the real-time static potential, V>(t, r), entering the Schrödinger-

equation. In particular, it would be important to clarify its connection to the other static

potentials that are being used for studying the spectral function of heavy quarkonium in

high-temperature QCD (for recent work and references see, e.g., ref. [27]).
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[19] D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard

thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545].

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C6264
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C6264
http://arxiv.org/abs/hep-ph/9609481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB426%2C351
http://arxiv.org/abs/hep-ph/9801430
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD33%2C3738
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD33%2C3738
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB430%2C319
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB430%2C319
http://arxiv.org/abs/hep-ph/9408262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C74%2C3530
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C74%2C3530
http://arxiv.org/abs/hep-ph/9410218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7208
http://arxiv.org/abs/hep-ph/9508280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C074504
http://arxiv.org/abs/hep-lat/0407042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C216%2C59
http://jhep.sissa.it/stdsearch?paper=03%282007%29054
http://arxiv.org/abs/hep-ph/0611300
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C1129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB334%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB334%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB337%2C569
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB337%2C569
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB346%2C115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB346%2C115
http://jhep.sissa.it/stdsearch?paper=05%282007%29028
http://arxiv.org/abs/0704.1720
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C4675
http://arxiv.org/abs/hep-th/9504123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C7781
http://arxiv.org/abs/hep-ph/9701393
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB299%2C67
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB353%2C346
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB506%2C387
http://arxiv.org/abs/hep-ph/9705380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C105008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C105008
http://arxiv.org/abs/hep-ph/9906259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C056003
http://arxiv.org/abs/hep-ph/9907545


J
H
E
P
0
9
(
2
0
0
7
)
0
6
6
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